Decadel Planning Team: "Medical Aspects of Exploration Missions"

NASA JSC Medical Sciences Division August 1999

Goals of Presentation

- Assess the medical aspects of an exploration mission
- Discuss breakthrough biological ideas/technologies that could enable human missions beyond Low Earth Orbit (LEO) at an acceptable level of risk
- Identify areas of research that are under funded

Overview

- Assumptions and Groundrules
- Governing Medical System Design Principles
- Medical Aspects of Exploration Missions
- Enabling Technologies
- Under Funded Biomedical Research
- Definitions of Risk
- Conclusion

Assumptions and Groundrules

- No crew return capability for medical contingencies
- Crew has been trained to be autonomous
- Six crew members
 - One physician
 - One crew member trained to the EMT-paramedic level
- ◆ 120-180 day transit time between Earth and Mars
- 7-40 minute round-trip communication
- Communication blackouts for up 30 days
- ◆ 500-600 day Mars surface stays

Governing Design Principles

- Non- or minimally-invasive
- Intelligence and automation should be built into the system
- Use of the system should be intuitive
- System mass, volume, and power consumption should be minimized
- Systems should be useable in all pressurized modules
- Systems should be sufficiently reliable to operate during the entire mission and readily upgradeable/serviceable for subsequent missions
- System design should accommodate the skill and medical training level of the crew
 - Intuitive interfaces
 - Assistive technologies
 - Comprehensive user support and feedback

Health Concerns of an Exploration Mission

- Radiation
 - Galactic Cosmic Radiation (GCR)
 - Solar Particle Events (SPE)
 - High Energy Heavy Ion Particles (HZE's)
- Lengthy Mission Durations
- One-g, micro-g, and fractional-g mission profile
- Isolation and Confinement
- Artificial Environment
- Food and Nutrition

Radiation

- Crew exposure to radiation on exploration missions could be several orders of magnitude greater than Shuttle Missions and could exceed the allowable yearly dose of 50 rem
- Radiation exposure increases the risk of cancer, cataracts, and genetic mutation
- Organs Sensitive to Radiation
 - Highly Sensitive: lymph tissue, bone marrow, gonads, gastrointestinal tract
 - Moderately Sensitive: lungs, skin, kidneys, eyes, liver
 - Less Sensitive: central nervous system, muscles, bones, connective tissue
- Galactic Cosmic Radiation (GCR) will most likely be the limiting factor for human exploration due to crew time spent outside the habitat
- Solar Particle Events (SPE) Requires real-time warning systems since SPE's can deliver lethal doses of energetic particles within a few hours or days

Lengthy Mission Durations

- Lengthy mission durations increase the health risks to the crew in a number of ways
 - Radiation exposure
 - Crew Isolation
 - Crew Confinement
 - Micro-gravity deconditioning
 - Increased work/recreation scheduling required
 - Depletion of consumables and limited shelf-life items
 - * Food
 - * Pharmaceuticals
 - Blood replacements
- Crew performance is more likely to decrease as mission length increases
- Mass/Volume increases with mission duration
- Transit time should be minimized

Micro-gravity

- Immunological changes
- Decreased red blood cell mass
- Bone and mineral loss
 - Increased risk of renal stones
 - Increased risk of fracture
 - Increased risk of irreversible osteoperosis
- Muscle atrophy/Loss of strength
- Neurological changes
- Cardiovascular changes
- Sleep disorders
- Visual dysfunction
- Impaired thermoregulation
- The crew will endure additional physiological stress due to the Mars mission g-profile: 1-g, μ-g, 0.38g, μ-g, 1-g (not including the more extreme launch and landing loads)

Isolation and Confinement

- Extended periods of isolation and confinement increase the risk to the mission objectives
- Crew mental health can be affected in a number of ways:
 - Decrements in mood
 - Depression
 - Anxiety
 - * Moral
 - Motivation
 - Conflict and aggression
 - Psychosocial induced stress
 - Decrements in cognition
- Work/Rest/Recreation schedules need to be designed carefully with minimal ground-crew influence

Artificial Environment

- The engineered environment poses a number of health concerns to the crew
 - Decreased Partial Pressure of O₂ (PPO₂)
 - Increased PPCO₂
 - Inhalation of foreign objects, fluids, or toxic gases
 - Off-nominal temperature and humidity levels
 - Bacterial growth
 - Water contamination
 - Chemically reactive Mars surface dust
 - Noise
 - Vibration
 - Odors
 - Visual sterility; lack of aesthetics
 - Lighting

Food and Nutrition

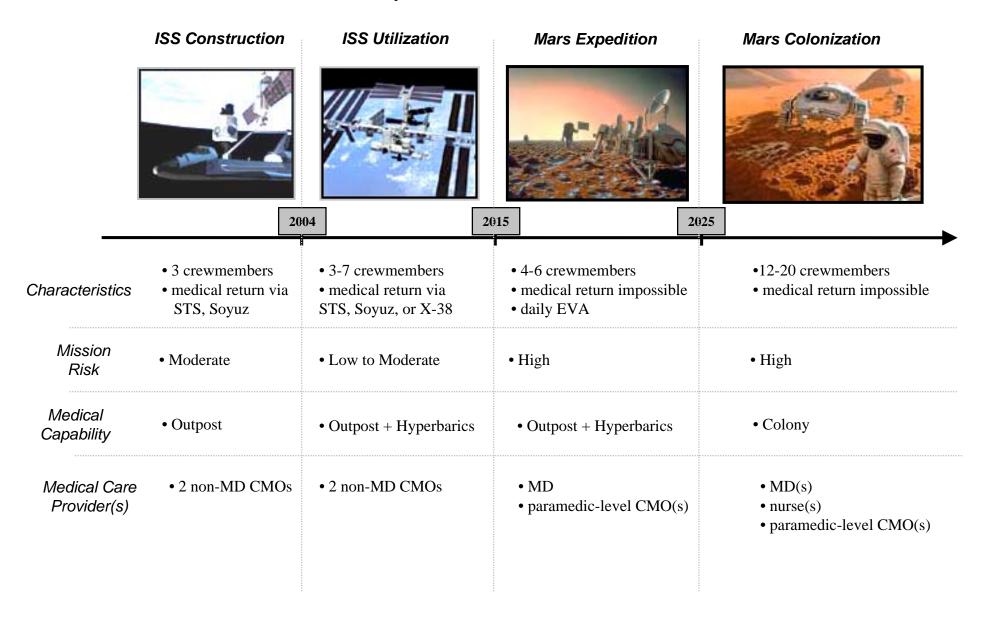
- Food quality and variety affects crew attitude and overall performance
 - Caloric intake needs to be sufficient, especially prior to EVA operations
 - Nutritional density
 - Palatability
 - Varied menu is essential
- Psychosocial benefit of communal meals

Enabling Medical Technologies

- Pertinent Medical Technologies for NASA
 - Autonomous monitoring and care
 - Non- or minimally-invasive therapeutics
 - Sensors
 - Medical infrastructure technologies
 - Medical training and simulation
 - Clinical medicine operations research
- Cross Functional Technologies within NASA
 - Advanced materials: reduces effects of radiation and μ-g deconditioning
 - * Enables the design of artificial gravity transit vehicles
 - * Reduces launch costs as strength to weight ratio increases
 - Advanced Propulsion Systems
 - * Reduces effects of radiation, μ-g, limited food selection, isolation, and confinement by minimizing transit durations
- Industry Driven Technologies
 - Computer Industry: displays, voice recognition, micro-networks, wearable computers
 - Telecommunication Industry: high bandwidth, wireless operations, microsystem, secure protocols
 - Medical Industry: blood substitutes, small/lightweight diagnostic systems

Under Funded Biomedical Research

- Medical Infrastructure Technologies
 - Extended-life pharmaceuticals
 - Radiation effects on pharmaceuticals
 - Recyclable medical supplies
 - Sterilization technologies
 - Micro-gravity suction, storage, and disposal
- Medical Training and Simulation
 - Technologies that satisfy the synergistic relationship between device sophistication and crew training requirements
- Autonomous Monitoring and Care
 - Decision support
 - Robotic surgical assistant
- Non- or Minimally Invasive Therapeutics
 - Focused, high-intensity acoustic ultrasound to stop internal bleeding
- Radiation Monitoring and Prediction


Under Funded Biomedical Research (continued)

- Clincial Medicine Research
 - Expected illnesses and ambulatory medical problems, including but not limited to:
 - Orthopedic and musculoskeletal problems
 - Infectious, hematological, and immune-related diseases
 - * Dermatological, ophthalmologic, and ENT problems
 - Acute medical emergencies in space including, but not limited to the following:
 - Wounds, lacerations, and burns
 - Toxic exposure and acute anaphylaxis
 - Acute radiation illness
 - Dental emergencies
 - Ophthalmologic emergencies
 - Psychiatric emergencies
 - Physiological responses to Mars dust exposure
 - Effective advanced life support

Three Levels of Risk and Implications

Medical Capabilities	Risk Accepted by Program	Implications
 Expedition Ambulatory Care First Aid Basic Life Support 	 High Can't fully recover from serious illness/injury Palliative care Permanent disability, death 	 No R&D Minimal crew medical training Public relations concerns if serious event occurs
 Outpost + Advanced Life Support + Resuscitation + Short-term critical care + Minor surgery 	 Moderate Serious illness/injury treated if reasonable outcome expected, otherwise palliation No long term care 	◆ Some R&D required◆ Crew MD + assistant (paramedic)
 Colony + Long-term critical care and rehabilitation + Major surgery 	 Low Similar outcome as if treated in Earth-based Hospital 	Major R&DMedical staff required

Space Medicine Vision

Conclusions

- ◆ A Mars mission is possible, but the level of acceptable risk to the crew must be defined at the programmatic level
- Risk drives the following:
 - Crew selection
 - Crew training requirements
 - Vehicle design
 - Use of vehicle resources
 - Storage and deployed volumes
 - Power usage
 - Data usage
 - * Mass
 - Gas (oxygen, nitrogen)
 - Mission Operations/Medical Operations
 - Selected/funded medical technologies